Agnibh Dasgupta
Agnibh Dasgupta
AI Researcher · PhD (Artificial Intelligence)
Representation Learning · Watermarking · LLM Robustness

Building robust, invariant representations for AI models

I study how models encode semantic meaning that remains stable under perturbations. My work spans robust representation learning for image watermarking, auto-augmentation, and identifying invariant latent features in LLMs for attribution and forensics.

View Publications GitHub CV

At a glance

  • PhD candidate at University of Nebraska - Omaha. Focus: Artificial Intelligence
  • Research interests:
    • Representation learning
    • Multimodal learning
    • Watermarking (vision & language)
    • LLM forensics
  • Other Interests: Reinforcement learning

About

I'm a doctoral researcher in Information Science & Technology at the University of Nebraska Omaha. My dissertation centers on invariant representation learning and its applications to robust image watermarking and LLM robustness.

Broadly, I design systems that remain stable under content-preserving transformations: geometric/photometric augmentations for images and lexical/structural paraphrases for text. I care about what an AI model knows versus how it encodes it.

Selected Research

Invariant Representation Learning in LLMs for Model Attribution

Invariant Representation Learning in LLMs for Model Attribution

Under review

Layer-wise analysis framework for identifying paraphrase-stable latent representations in LLMs. Supports semantic clustering and model attribution tasks.

Invariant Feature Learning with Auto-Augmentation for Watermarking

Invariant Feature Learning with Auto-Augmentation for Watermarking

Under review

Differentiable augmentation framework that learns to adversarially perturb images to challenge encoders. Evaluates representation stability via classification and similarity-based objectives.

Robust Image Watermarking via Cross-Attention & Invariant Domain Learning

Robust Image Watermarking via Cross-Attention & Invariant Domain Learning

International Conf. on Computational Science & Computational Intelligence 2023

Watermark embedding and extraction method resilient to geometric and photometric attacks. Utilizes ViT-based cross-attention to align invariant domain features for robust watermark decoding. The figure above shows an overview of our proposed franework.

Paper · Code

Publications

Links to papers in press will be updated as they become available.

Contact

Email adg002@gmail.com

GitHub cent664

LinkedIn linkedin.com/in/cent664

Google Scholar Google Scholar Profile